12-15-2021, 11:27 PM
Understanding Compressors
Industrial Air Compressors are mechanical devices used to increase pressure in a variety of compressible fluids, or gases, the most common of these being air. Compressors are used throughout industry to provide shop or instrument air; to power air tools, paint sprayers, and abrasive blast equipment; to phase shift refrigerants for air conditioning and refrigeration; to propel gas through pipelines; etc. As with pumps, compressors are divided into centrifugal (or dynamic or kinetic) and positive-displacement types; but where pumps are predominately represented by centrifugal varieties, compressors are more often of the positive- displacement type. They can range in size from the fits-in-a-glovebox unit that inflates tires to the giant reciprocating or turbocompressor machines found in pipeline service. Positive-displacement Compressor For General Industrys can be further broken out into reciprocating types, where the piston style predominates, and rotary types such as the helical screw and rotary vane.
Piston Compressors
Piston compressors, or reciprocating compressors, rely on the reciprocating action of one or more pistons to compress gas within a cylinder (or cylinders) and discharge it through valving into high pressure receiving tanks. In many instances, the tank and Compressor For Steel are mounted in a common frame or skid as a so-called packaged unit. While the major application of piston compressors is providing compressed air as an energy source, piston compressors are also used by pipeline operators for natural gas transmission. Piston compressors are generally selected on the pressure required (psi) and the flow rate (scfm). A typical plant-air system provides compressed air in the 90-110 psi range, with volumes anywhere from 30 to 2500 cfm; these ranges are generally attainable through commercial, off-the-shelf units. Plant-air systems can be sized around a single unit or can be based on multiple smaller units which are spaced throughout the plant.
To achieve higher air pressures than can be provided by a single stage compressor, two-stage units are available. Compressed air entering the second stage normally passes through an intercooler beforehand to eliminate some of the heat generated during the first-stage cycle.
Speaking of heat, many piston compressors are designed to operate within a duty cycle, rather than continuously. Such cycles allow heat generated during the operation to dissipate, in many instances, through air-cooled fins.
Piston Compressor For Minings are available as both oil-lubricated and oil-free designs. For some applications which require oil-free air of the highest quality, other designs are better suited.
Diaphragm Compressors
A somewhat specialized reciprocating design, the diaphragm compressor uses a motor-mounted concentric that oscillates a flexible disc which alternately expands and contracts the volume of the compression chamber. Much like a diaphragm pump, the drive is sealed from the process fluid by the flexible disc, and thus there is no possibility of lubricant coming into contact with any gas. Diaphragm air compressors are relatively low capacity machines that have applications where very clean air is required, as in many laboratory and medical settings.
Helical Screw Compressors
Helical-screw compressors are rotary compressor machines known for their capacity to operate on 100% duty cycle, making them good choices for trailerable applications such as construction or road building. Using geared, meshing male and female rotors, these units pull gas in at the drive end, compress it as the rotors form a cell and the gas travels their length axially, and discharge the compressed gas through a discharge port on the non-drive end of the Oil Injected Screw Air Compressor casing. The rotary screw compressor action makes it quieter than a reciprocating compressor owing to reduced vibration. Another advantage of the screw compressor over piston types is the discharge air is free of pulsations. These units can be oil- or water- lubricated, or they can be designed to make oil-free air. These designs can meet the demands of critical oil-free service.
Sliding Vane Compressors
A sliding-vane compressor relies on a series of vanes, mounted in a rotor, which sweep along the inside wall of an eccentric cavity. The vanes, as they rotate from the suction side to the discharge side of the eccentric cavity, reduce the volume of space they are sweeping past, compressing the gas trapped within the space. The vanes glide along on an oil film which forms on the wall of the eccentric cavity, providing a seal. Sliding-vane compressors cannot be made to provide oil-free air, but they are capable of providing compressed air that is free of pulsations. They are also forgiving of contaminants in their environments owing to the use of bushings rather than bearings and their relatively slow-speed operation compared to screw compressors. They are relatively quiet, reliable, and capable of operating at 100% duty cycles. Some sources claim that rotary vane compressors have been largely overtaken by screw compressors in Oil Free Screw Air Compressor applications. They are used in many non-air applications in the oil and gas and other process industries.
Scroll Compressors
Scroll air compressors use stationary and orbiting spirals which decrease the volume of space between them as the orbiting spirals trace the path of the fixed spirals. Intake of gas occurs at the outer edge of the scrolls and discharge of the compressed gas takes place near the center. Because the scrolls do not contact, no lubricating oil is needed, making the compressor intrinsically oil-free. However, because no oil is used in removing the heat of compression as it is with other designs, capacities for scroll compressors are somewhat limited. They are often used in low-end High Pressure Air Compressors and home air-conditioning compressors.
Rotary Lobe Compressors
Rotary-lobe compressors are high-volume, low-pressure devices more appropriately classified as blowers. To learn more about blowers, download the free Thomas Blowers Buying Guide.
Centrifugal Compressors
Centrifugal compressors rely on high-speed pump-like impellers to impart velocity to gases to produce an increase in pressure. They are seen mainly in high-volume applications such as commercial refrigeration units in the 100+ hp ranges and in large processing plants where they can get as large as 20,000 hp and deliver volumes in the 200,000 cfm range. Almost identical in construction to centrifugal pumps, centrifugal Portable Air Compressors increase the velocity of gas by throwing it outward by the action of a spinning impeller. The gas expands in a casing volute, where its velocity slows and its pressure rises.
Centrifugal compressors have lower compression ratios than displacement compressors, but they handle vast volumes of gas. Many centrifugal compressors use multiple stages to improve the compression ratio. In these multi-stage compressors, the gas usually passes through intercoolers between stages.
Industrial Air Compressors are mechanical devices used to increase pressure in a variety of compressible fluids, or gases, the most common of these being air. Compressors are used throughout industry to provide shop or instrument air; to power air tools, paint sprayers, and abrasive blast equipment; to phase shift refrigerants for air conditioning and refrigeration; to propel gas through pipelines; etc. As with pumps, compressors are divided into centrifugal (or dynamic or kinetic) and positive-displacement types; but where pumps are predominately represented by centrifugal varieties, compressors are more often of the positive- displacement type. They can range in size from the fits-in-a-glovebox unit that inflates tires to the giant reciprocating or turbocompressor machines found in pipeline service. Positive-displacement Compressor For General Industrys can be further broken out into reciprocating types, where the piston style predominates, and rotary types such as the helical screw and rotary vane.
Piston Compressors
Piston compressors, or reciprocating compressors, rely on the reciprocating action of one or more pistons to compress gas within a cylinder (or cylinders) and discharge it through valving into high pressure receiving tanks. In many instances, the tank and Compressor For Steel are mounted in a common frame or skid as a so-called packaged unit. While the major application of piston compressors is providing compressed air as an energy source, piston compressors are also used by pipeline operators for natural gas transmission. Piston compressors are generally selected on the pressure required (psi) and the flow rate (scfm). A typical plant-air system provides compressed air in the 90-110 psi range, with volumes anywhere from 30 to 2500 cfm; these ranges are generally attainable through commercial, off-the-shelf units. Plant-air systems can be sized around a single unit or can be based on multiple smaller units which are spaced throughout the plant.
To achieve higher air pressures than can be provided by a single stage compressor, two-stage units are available. Compressed air entering the second stage normally passes through an intercooler beforehand to eliminate some of the heat generated during the first-stage cycle.
Speaking of heat, many piston compressors are designed to operate within a duty cycle, rather than continuously. Such cycles allow heat generated during the operation to dissipate, in many instances, through air-cooled fins.
Piston Compressor For Minings are available as both oil-lubricated and oil-free designs. For some applications which require oil-free air of the highest quality, other designs are better suited.
Diaphragm Compressors
A somewhat specialized reciprocating design, the diaphragm compressor uses a motor-mounted concentric that oscillates a flexible disc which alternately expands and contracts the volume of the compression chamber. Much like a diaphragm pump, the drive is sealed from the process fluid by the flexible disc, and thus there is no possibility of lubricant coming into contact with any gas. Diaphragm air compressors are relatively low capacity machines that have applications where very clean air is required, as in many laboratory and medical settings.
Helical Screw Compressors
Helical-screw compressors are rotary compressor machines known for their capacity to operate on 100% duty cycle, making them good choices for trailerable applications such as construction or road building. Using geared, meshing male and female rotors, these units pull gas in at the drive end, compress it as the rotors form a cell and the gas travels their length axially, and discharge the compressed gas through a discharge port on the non-drive end of the Oil Injected Screw Air Compressor casing. The rotary screw compressor action makes it quieter than a reciprocating compressor owing to reduced vibration. Another advantage of the screw compressor over piston types is the discharge air is free of pulsations. These units can be oil- or water- lubricated, or they can be designed to make oil-free air. These designs can meet the demands of critical oil-free service.
Sliding Vane Compressors
A sliding-vane compressor relies on a series of vanes, mounted in a rotor, which sweep along the inside wall of an eccentric cavity. The vanes, as they rotate from the suction side to the discharge side of the eccentric cavity, reduce the volume of space they are sweeping past, compressing the gas trapped within the space. The vanes glide along on an oil film which forms on the wall of the eccentric cavity, providing a seal. Sliding-vane compressors cannot be made to provide oil-free air, but they are capable of providing compressed air that is free of pulsations. They are also forgiving of contaminants in their environments owing to the use of bushings rather than bearings and their relatively slow-speed operation compared to screw compressors. They are relatively quiet, reliable, and capable of operating at 100% duty cycles. Some sources claim that rotary vane compressors have been largely overtaken by screw compressors in Oil Free Screw Air Compressor applications. They are used in many non-air applications in the oil and gas and other process industries.
Scroll Compressors
Scroll air compressors use stationary and orbiting spirals which decrease the volume of space between them as the orbiting spirals trace the path of the fixed spirals. Intake of gas occurs at the outer edge of the scrolls and discharge of the compressed gas takes place near the center. Because the scrolls do not contact, no lubricating oil is needed, making the compressor intrinsically oil-free. However, because no oil is used in removing the heat of compression as it is with other designs, capacities for scroll compressors are somewhat limited. They are often used in low-end High Pressure Air Compressors and home air-conditioning compressors.
Rotary Lobe Compressors
Rotary-lobe compressors are high-volume, low-pressure devices more appropriately classified as blowers. To learn more about blowers, download the free Thomas Blowers Buying Guide.
Centrifugal Compressors
Centrifugal compressors rely on high-speed pump-like impellers to impart velocity to gases to produce an increase in pressure. They are seen mainly in high-volume applications such as commercial refrigeration units in the 100+ hp ranges and in large processing plants where they can get as large as 20,000 hp and deliver volumes in the 200,000 cfm range. Almost identical in construction to centrifugal pumps, centrifugal Portable Air Compressors increase the velocity of gas by throwing it outward by the action of a spinning impeller. The gas expands in a casing volute, where its velocity slows and its pressure rises.
Centrifugal compressors have lower compression ratios than displacement compressors, but they handle vast volumes of gas. Many centrifugal compressors use multiple stages to improve the compression ratio. In these multi-stage compressors, the gas usually passes through intercoolers between stages.